

# **ZXCT1051**

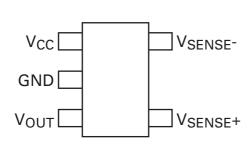
# Precision wide input range current monitor

#### **Description**

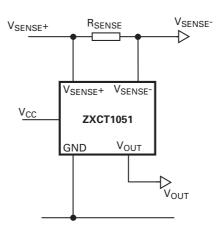
The ZXCT1051 is a wide input range current monitor, which operates over a range of input voltages from ground up to  $V_{CC}$ -2V. As a result the ZXCT1051 can be used on the high or low side of the load.

The very low offset voltage enables a typical accuracy of 1% for sense voltages of only 30mV, giving better tolerances for small sense resistors necessary at higher currents.

The ZXCT1051 provides a fixed gain of 10 thereby removing the need for an additional resistor.


#### **Features**

- · Accurate down to end current sensing
- Output voltage scaling x10
- 0 to V<sub>CC</sub>-2V sense input range
- 2.7 to 20V supply range
- 50 μA quiescent current
- 1% typical accuracy
- SOT23-5 package


### **Applications**

- · Power supply
- · DC motor and solenoid control
- · Battery management
- · Over current monitor
- · Power management
- · Short circuit detection

#### Pin connections



## Typical application circuit



#### **Ordering information**

| Order code   | Package | Partmark | Reel size (inches) | Tape width (mm) | Quantity per reel |
|--------------|---------|----------|--------------------|-----------------|-------------------|
| ZXCT1051E5TA | SOT23-5 | 1051     | 7                  | 8               | 3,000             |

## **Absolute maximum ratings**

V<sub>CC</sub> max. 20V

Voltage on  $V_{SENSE}$ - and  $V_{SENSE}$ + -0.6 to  $V_{CC}$ 

Voltage on all other pins -0.6V and  $V_{CC} +0.6V$ 

V<sub>SENSE</sub> "(V<sub>SENSE</sub>+) - (V<sub>SENSE</sub>-) 500 mV

Operating temperature,  $T_A$  -40 to 125°C Storage temperature -55 to 150°C

Maximum junction temperature 150°C

Package power dissipation 300mW at  $T_A = 25^{\circ}\text{C}$  (de-rate to zero at 150°C)

Operation above the absolute maximum rating may cause device failure. Operation at the absolute maximum ratings, for extended periods, may reduce device reliability.

### **Recommended operating conditions**

|                     | Parameter                              | Min. | Max.                | Units |
|---------------------|----------------------------------------|------|---------------------|-------|
| V <sub>SENSE+</sub> | Common-mode sense input range          | 0    | V <sub>CC</sub> -2  | V     |
| V <sub>CC</sub>     | Supply voltage range                   | 2.7  | 20                  | V     |
| V <sub>SENSE</sub>  | Differential sense input voltage range | 0    | 0.3                 | V     |
| V <sub>OUT</sub>    | Output voltage range                   | 0    | V <sub>CC</sub> - 2 | V     |
| T <sub>A</sub>      | Ambient temperature range              | -40  | 125                 | °C    |

#### Pin function table

| PIN | Name                 | Description                                                                                                                                                               |
|-----|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | V <sub>CC</sub>      | This is the analog supply and provides power to internal circuitry                                                                                                        |
| 2   | GND                  | Ground pin                                                                                                                                                                |
| 3   | OUT                  | Output voltage pin. NMOS source follower with 20µA bias to ground                                                                                                         |
| 4   | V <sub>SENSE</sub> + | This is the positive input of the current monitor and has an input range from 0V up to $V_{CC}$ – 2V. The current through this pin varies with differential sense voltage |
| 5   | V <sub>SENSE</sub> - | This is the negative input of the current monitor and has an input range from 0V up to $V_{\text{CC}}$ – 2V                                                               |

#### **Electrical characteristics**

Test conditions  $T_A = 25$ °C,  $V_{SENSE} + = 10V$ ,  $V_{CC} = 12V$ ,  $V_{SENSE} = 100$ mV

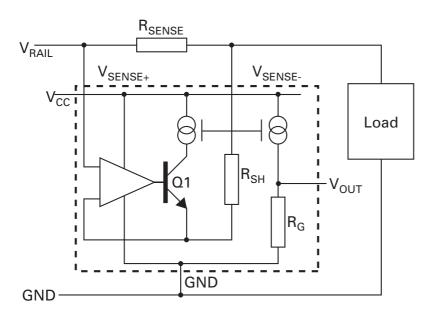
| Symbol               | Parameter                                   | Conditions                                              |                                                | Min.                     | Тур.                     | Max.                      | Units         |
|----------------------|---------------------------------------------|---------------------------------------------------------|------------------------------------------------|--------------------------|--------------------------|---------------------------|---------------|
| IΩ                   | V <sub>CC</sub> pin current                 | V <sub>SENSE</sub> = 0V                                 |                                                |                          | 45                       | 70                        | μΑ            |
| V <sub>OUT</sub>     | Output voltage                              | V <sub>SENSE</sub> = 0V<br>=30mV<br>=100mV<br>=150mV    |                                                | 0<br>291<br>0.98<br>1.45 | 3<br>300<br>1.00<br>1.50 | 10<br>309<br>1.02<br>1.55 | mV<br>mV<br>V |
| I <sub>SENSE</sub> + | V <sub>SENSE+</sub> input current           | V <sub>SENSE</sub> = 0                                  | /                                              |                          | TBD                      | TBD                       | μΑ            |
| I <sub>SENSE</sub> - | V <sub>SENSE</sub> input current            | V <sub>SENSE</sub> = 0V                                 |                                                |                          | 15                       | 150                       | nA            |
| V <sub>OUT</sub> TC  | V <sub>OUT</sub> variation with temperature | See note (b)                                            |                                                |                          |                          | 300                       | ppm/°C        |
| R <sub>OUT</sub>     | Output resistance                           |                                                         |                                                | 2.5                      | 3.75                     | 5                         | kΩ            |
| Gain                 | V <sub>OUT</sub> /V <sub>SENSE</sub>        |                                                         |                                                |                          | 10                       |                           |               |
| Accuracy             | Total output error                          |                                                         |                                                | -2                       |                          | 2                         | %             |
| = 10mV               | Bandwidth                                   | V <sub>SENSE(DC)</sub><br>= 10mV                        | V <sub>SENSE(AC)</sub><br>= 10mV <sub>PP</sub> |                          | 300                      |                           | kHz           |
|                      | V <sub>SENSE(DC)</sub><br>= 100mV           | CL = 5pF,                                               |                                                | 1                        |                          | MHz                       |               |
| PSRR                 | Power supply rejection ratio                | $V_{CC} = 2.7V \text{ to } 20V$<br>$V_{SENSE} + = 0.7V$ |                                                | TBD                      | TBD                      |                           | dB            |
| CMRR                 | Common mode rejection ratio                 | $V_{CC} = 20V$ $V_{SENSE^+} = 0$ to 18V                 |                                                | TBD                      | TBD                      |                           | dB            |

#### NOTES:

<sup>(</sup>a)  $V_{SENSE} = "V_{SENSE} + " - "V_{SENSE} - "$ (b) Temperature dependent measurements are extracted from characterization and simulation results.

# **Typical characteristics**

Test conditions unless otherwise stated:  $T_A = 25^{\circ}C$ ,  $V_{CC} = 12V$ ,  $V_{SENSE} + = 10V$ ,  $V_{SENSE} = 100 \text{mV}$ 


| DC characteristics     |                                 |                                                                                                                                   |  |  |  |
|------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Y-axis                 | X-axis                          | Variables                                                                                                                         |  |  |  |
| I <sub>CC</sub>        | V <sub>CC</sub> (0 to 20V)      | T <sub>A</sub> = -40, 25, 85, 125°C, V <sub>SENSE</sub> = 0V V <sub>SENSE</sub> + = 0V                                            |  |  |  |
|                        | V <sub>CC</sub> (2 to 20V)      | T <sub>A</sub> = -40, 25, 85, 125°C, V <sub>SENSE</sub> = 0V V <sub>SENSE</sub> + = V <sub>CC</sub> - 2V                          |  |  |  |
| I <sub>SENSE</sub> +   | V <sub>SENSE</sub> + (0 to 18V) | $T_A = 25$ °C, $V_{SENSE} = 0V$ , $V_{CC} = 20V$                                                                                  |  |  |  |
| I <sub>SENSE</sub> +   | T <sub>A</sub>                  | $V_{SENSE} = 0V$ , $V_{SENSE} + = 18V$ $V_{CC} = 20V$                                                                             |  |  |  |
| I <sub>SENSE</sub> -   | V <sub>SENSE</sub> + (0 to 18V) | T <sub>A</sub> =25°C, V <sub>SENSE</sub> = 0V, V <sub>CC</sub> = 20V                                                              |  |  |  |
| V <sub>OUT</sub>       | V <sub>SENSE</sub>              | T <sub>A</sub> = -40°C, 0°C, 25°C, 85°C, 125°C.                                                                                   |  |  |  |
| V <sub>OUT</sub>       | T <sub>A</sub>                  | V <sub>SENSE</sub> = 10mV, 50mV, 100mV.                                                                                           |  |  |  |
| V <sub>OH</sub>        | I <sub>OH</sub> source          | Output source current swept                                                                                                       |  |  |  |
| V <sub>OL</sub>        | I <sub>OL</sub> sink            | $T_A = -40$ °C, 25°C, 125°C.                                                                                                      |  |  |  |
| Differential gain      | V <sub>SENSE</sub>              | Differential sense voltage swept and differential gain calculated                                                                 |  |  |  |
| $\Delta V_{OUT}$       | V <sub>SENSE</sub> + (0 to 18V) | V <sub>SENSE</sub> = 10mV, 50mV, 100mV, 150mV<br>T <sub>A</sub> = -40°C, 0°C, 25°C, 85°C, 125°C.                                  |  |  |  |
| $\Delta V_{OUT}$       | V <sub>CC</sub> (0 to 20V)      | V <sub>SENSE</sub> = 10mV, 50mV, 100mV, 150mV<br>T <sub>A</sub> = -40°C, 0°C, 25°C, 85°C, 125°C.                                  |  |  |  |
| AC and transier        | nt characteristics              |                                                                                                                                   |  |  |  |
| Small signal bandwidth | Frequency                       | $V_{SENSE(DC)} = 10$ mV, $V_{SENSE(AC)} = 10$ mV <sub>PP</sub><br>$V_{SENSE(DC)} = 100$ mV, $V_{SENSE(AC)} = 10$ mV <sub>PP</sub> |  |  |  |
| Large signal response  | Time                            | V <sub>SENSE</sub> + = 12V, V <sub>SENSE</sub> - = 0V to -0.2V to +0.2V to 0V                                                     |  |  |  |
| Small signal response  | Time                            | V <sub>SENSE</sub> + = 12V, V <sub>SENSE</sub> - = 0V to -0.01V to +0.1V to 0V                                                    |  |  |  |
| PSRR                   | Frequency                       | $V_{CC(AC)} = 10 \text{mV}_{PP}$                                                                                                  |  |  |  |
| CMRR                   | Frequency                       | $V_{SENSE+(AC)} = 10 \text{mV}_{PP}$                                                                                              |  |  |  |

#### **Application information**

The ZXCT1051 is Zetex' first current monitor with a separate power supply pin. All biasing for the internal amplifiers comes from its separate  $V_{CC}$  input and is not 'line powered', unlike the ZXCT1021.

This means that at very small sense voltages the ZXCT1051 draws very little current ( $<1\mu A$ ) from the lines being sensed.

The separate  $V_{CC}$  pin enables the ZXCT1051 to be operated at sense line voltages down to 0V, where the ZXCT1021 would switch off. This feature enables the ZXCT1051 to be used to sense the currents flowing through lines that have been shorted to ground and is Zetex' first current monitor to do this.



#### **Basic operation**

Load current from  $V_{\text{IN}}$  is drawn through  $R_{\text{SENSE}}$  developing a voltage  $V_{\text{SENSE}}$  across the ZXCT1051.

The internal amplifier forces  $V_{SENSE}$  across internal resistance  $R_{SH}$  causing a current to flow through transistor Q1. This current is then converted to a voltage by  $R_{G}$ . A ratio of 10:1 between  $R_{SH}$  and  $R_{G}$  creates the fixed gain of 10 with an output impedance equal to  $R_{G}$  (see electrical characteristics for output current-voltage characteristics).

The gain equation of the ZXCT1051 is:

$$V_{SENSE} = I_L R_{SENSE} \frac{R_G}{R_{SH}} \times 1$$

The maximum differential input voltage,  $V_{SENSE}$ , is 150mV ( $I_L * R_{SENSE}$ ); however voltages up to 500mV will not damage it. This can be increased further by the inclusion of a resistor,  $R_{LIM}$ , between  $V_{SENSE}$ - pin and the load.

For best performance  $R_{SENSE}$  should be connected as close to the  $V_{SENSE}$ + and  $V_{SENSE}$ - pins thus minimizing any series resistance with  $R_{SENSE}$ .

# **ZXCT1051**

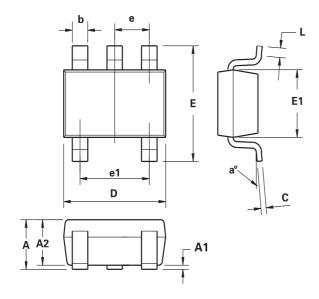
The ZXCT1051 has been designed to allow it to operate from supplies ( $V_{CC}$ ) ranging from 2.7V to 20V while sensing common mode signals from 0V up to  $V_{CC}$  -2V.

When choosing appropriate values for R<sub>SENSE</sub> a compromise must be reached between in-line signal loss (including potential power dissipation effects) and small signal accuracy.

Higher values for  $R_{SENSE}$  gives better accuracy at low load currents by reducing the inaccuracies due to internal offsets. For best operation the ZXCT1051 has been designed to operate with  $V_{SENSE}$  of the order of 50mV to 150mV.

Due to the very nature of current monitors they tend to saturate at very low sense voltages. This is due to them being operated from single supply and that the basic configuration is that of a unipolar voltage to current to voltage converter. The internal amplifiers at the heart of the current monitor may well have a bipolar offset voltage but the output cannot go negative.

For this reason the ZXCT1051 has been designed to operate in a linear manner over a  $V_{SENSE}$  range of 10mV to 150mV range, however it will still be monotonic down to  $V_{SENSE}$  of 0V.


The device has a fixed DC voltage gain of 10; no external scaling resistors are required for the output. Output voltage is simply defined as:

 $V_{OUT} = gain \times V_{SENSE} (V)$ 

# **ZXCT1051**

Intentionally left blank

## Packaging details - SOT23-5



| DIM | Millimeters |      | Inc    | hes        |  |  |
|-----|-------------|------|--------|------------|--|--|
|     | Min.        | Max. | Min.   | Max.       |  |  |
| А   | 0.90        | 1.45 | 0.0354 | 0.0570     |  |  |
| A1  | 0.00        | 0.15 | 0.00   | 0.0059     |  |  |
| A2  | 0.90        | 1.30 | 0.0354 | 0.0511     |  |  |
| b   | 0.20        | 0.50 | 0.0078 | 0.0196     |  |  |
| С   | 0.09        | 0.26 | 0.0035 | 0.0102     |  |  |
| D   | 2.70        | 3.10 | 0.1062 | 0.1220     |  |  |
| E   | 2.20        | 3.20 | 0.0866 | 0.1181     |  |  |
| E1  | 1.30        | 1.80 | 0.0511 | 0.0708     |  |  |
| е   | 0.95 REF    |      | 0.037  | 0.0374 REF |  |  |
| e1  | 1.90 REF    |      | 0.074  | 18 REF     |  |  |
| L   | 0.10        | 0.60 | 0.0039 | 0.0236     |  |  |
| a°  | 0°          | 30°  | 0°     | 30°        |  |  |

Note: Controlling dimensions are in millimeters. Approximate dimensions are provided in inches

Europe Americas Asia Pacific **Corporate Headquarters** Zetex Semiconductors plc Zetex GmbH Zetex Inc. Zetex (Asia Ltd) Zetex Serniconductors pic Zetex Technology Park, Chadderton Oldham, OL9 9LL 3701-04 Metroplaza Tower 1 Streitfeldstraße 19 700 Veterans Memorial Highway D-81673 München Hauppauge, NY 11788 Hing Fong Road, Kwai Fong Germany Hong Kong United Kingdom Telephone: (852) 26100 611 Telefon: (49) 89 45 49 49 0 Telephone: (1) 631 360 2222 Telephone: (44) 161 622 4444 Fax: (852) 24250 494 Fax: (49) 89 45 49 49 49 Fax: (1) 631 360 8222 Fax: (44) 161 622 4446 hq@zetex.com europe.sales@zetex.com usa.sales@zetex.com asia.sales@zetex.com

For international sales offices, agents and distributors please go to www.zetex.com/salesnetwork

This publication is issued to provide outline information only which (unless agreed by the company in writing) may not be used, applied or reproduced for any purpose or form part of any order or contact or be regarded as a representation relating to the products or services concerned. The company reserves the right to alter without notice the specification, design, price or conditions of supply of any product or service.